PARAMETER STATEMENT OF THE PARAMETER STATEMENT O

K24U 4025

Reg. No.:....

Name :

First Semester B.Sc. Degree (C.B.C.S.S. – OBE-Supplementary/ Improvement) Examination, November 2024 (2019 to 2023 Admission) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 1C01 MAT-BCA: Mathematics for BCA – I

Time: 3 Hours

SECTION - A

Questions 1-5, answer any four questions. Each question carries one mark.

 $(4 \times 1 = 4)$

Max. Marks: 40

- 1. Show that $\frac{d}{dx}(\cos^{-1}x + \sin^{-1}x) = 0$.
- 2. Find the derivative of $\sqrt{\frac{e^x + e^{-x}}{2}}$.
- 3. Write the dual of the following statement : a' * (a + b) = a' * b.
- 4. Find the rank of the matrix $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -1 0 \end{pmatrix}$
- 5. Show that A-1 is orthogonal if A is orthogonal

SECTION - B

Questions 6-15, answer any seven questions. Each question carries two marks.

 $(7 \times 2 = 14)$

- 6. Find the derivative of $log(x + \sqrt{x^2 + 1})$.
- 7. Given that $y = \sin(\log x)$. Prove that $x^2y_2 + xy_1^2 + y = 0$.
- 8. Find the nth derivative of cos(x/2).
- 9. Given that $x = t^2 + 1$, y = 2t 1. Find $\frac{d^2y}{dx^2}$.

K24U 4025

-2-

- 10. Prove that in a Boolean Algebra B, x'' = x for all $x \in B$.
- 11. Give an example for a Boolean Algebra with two elements.
- 12. Find the normal form of the matrix $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$.
- 13. Show that the matrix $\begin{pmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{pmatrix}$ is orthogonal.
- 14. Find the value of λ such that the rank of the matrix $\begin{pmatrix} \lambda & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & \lambda \end{pmatrix}$ is 2.
- 15. Does the set of equations 2x + y + z = 0, x y + z = -1, 3x + 2z = -1 are consistent? Justify your answer.

SECTION - C

Questions 16-22, answer any four questions. Each question carries three marks.

 $(4 \times 3 = 12)$

- 16. Derive the derivative of cosec⁻¹x.
- 17. Find $\frac{dy}{dx}$, if $y = \frac{\sqrt{\sin x + \sin 2x + \sin 3x}}{\cos x + \cos 2x + \cos 3x}$.
- 18. Given that $x^2 + y^2 + 4xy = 0$. Prove that $\frac{dy}{dx} = \frac{-(x+2y)}{(2x+y)}$.
- 19. Find the nth derivative of e^x cos x.
- 20. State and prove the Absorption Laws in a Boolean Algebra B.
- 21. Solve the system of equations x + y + z = 1, 14x + 7y + 7z = 4, 7x + 14y 7z = 1 using Crammer's rule.
- 22. Show that the vectors $x_1 = (-1, 2, 3, 0), x_2 = (2, 0, 3, 0), x_3 = (1, 0, 0, -1)$ are linearly independent.

SECTION - D

Questions 23-26, answer any two questions. Each guestion carries five marks.

 $(2 \times 5 = 10)$

23. If
$$y = (\sin^{-1} x)^2$$
, prove that $(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} - n^2y_n = 0$.

24. Find $\frac{dy}{dx}$ for the following :

a)
$$y = (\log x)^x + x^x$$

a)
$$y = (\log x)^{x} + x^{x}$$
 b) $y = \cos^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)$

25. State and prove the De Morgan's Laws in a Boolean Algebra B.

26. Investigate the values of μ and λ so that the equations 2x + 3y + 5z = 9, 7x + y - 2z = 8, $2x + y + \lambda z = \mu$ have

i) no solution ii) a unique solution iii) an infinite number of solutions.

