

K23U 4077

18. Fi 64: sank. x Marks: 40 F e e v io ev Max. Marks: 40 F . 81

21. Using Cramer's rule solve the system

22. Find the values of k for which the system

non-trivial solution

23. If $y^{del \, x} + (lan^{-1} \, x)^y = 1$, and dy

Reg. No.:....

Cuestions 16-22: Answer any 4 questionsranch substitute on carries 3 marks. (4x3=12)

I Semester B.Sc. Degree (C.B.C.S.S. - O.B.E. Regular/Supplementary/ Improvement) Examination, November 2023 (2019 Admission Onwards)

COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 1C01 MAT – BCA: Mathematics for BCA – I

Time: 3 Hours

SECTION - A

Questions 1-5: Answer any 4 questions. Each question carries 1 mark. (4×1=4)

1. What is the derivative of $y = x^5 - x^3 + x$?

2. What is the derivative of $y = a^{x}$?

3. What do you mean by dual of a statement in Boolean Algebra ? - x5 , 8 = x5 + y + x8

4. What do you mean by rank of a matrix?

5. State Rouche's theorem in matrices. (8 - 38) + 38 + 38 = 58 + 98 + 38 = 38

SECTION - B

Questions 6-15: Answer any 7 questions. Each question carries 2 marks. (7×2=14)

6. Find the derivative of y ⇒ sec⁻¹ x soun ross an oitesup 2 year sevenA : 35-25 anoitesup

• 7. If $y = e^{ax} \sin bx$, prove that $y_2 - 2ay_1 + (a^2 + b^2)y = 0$.

8. Find the nth derivative of $y = \cos(ax + b)$.

9. State Leibnitz theorem to find the nth derivative of product of two functions.

10. State any four basic theorems in Boolean Algebra.

11. Let a, b ∈ B, a Boolean Algebra. Prove that a + b is an upper bound for the set {a, b}.

12. Define normal form of a matrix. Give an example.

13. Find the rank of the matrix $\begin{bmatrix} 1 & 4 & 15 \\ 2 & 6 & 8 \\ 3 & 7 & 22 \end{bmatrix}$.

14. Define an orthogonal matrix. Give an example.

15. Define linear dependence and independence of vectors.

26. Reduce the matrix

t. What is the derivative of y =

Questions 6-15: Answer any 7 qu

7. If $y = e^{ax}$ sin by, prove that y

Time: 3 Hours

SECTION - C

Questions 16-22: Answer any 4 questions. Each question carries 3 marks. (4x3=12)

Semester B.Sc. Degree (C.B.C.S.S. – C.B.C. – Regular/Supplementary.)

1.15 Find
$$\frac{dy}{dx}$$
 when $x = 2 \cos t - \cos 2t$, $y = 2 \sin t - \sin 2t$. (2019 Admission Conwards)

17. Find
$$\frac{dy}{dx}$$
 when $x^3 + y^3 = 3axy$. It is a solution of the solution

18. Find the nth derivative of
$$y = e^x \cos^2 x \sin x$$
.

19. Find the nth derivative of
$$y = \frac{x}{(x-1)(2x+3)}$$

21. Using Cramer's rule solve the system of equations:
$$3x + y + 2z = 3$$
, $2x - 3y - z = -3$, $x + 2y + z = 4$.

22. Find the values of k for which the system of equations
$$(3k-8)x + 3y + 3z = 0$$
, $3x + (3k-8)y + 3z = 0$, $3x + 3y + (3k-8)z = 0$ has a non-trivial solution.

SECTION - D

Questions 23-26: Answer any 2 questions. Each question carries 5 marks. (2x5=10)

23. If
$$y^{\cot x} + (\tan^{-1} x)^y = 1$$
, find $\frac{dy}{dx}$.

2 marks. (7x2=14)

24. If
$$y = (\sin^{-1} x)^2$$
, prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$.

26. Reduce the matrix
$$\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -2 \\ 6 & 3 & 0 & -7 \end{bmatrix}$$
 into normal form and hence find its rank.

	3/50	MI COL	K22U	3425 AE U	K22
Reg. No.:	₹ KA*	70MB (3)	io – v toon	videott en 10	
Name :	3, x+x18	*xb/3/		Given that x =	
21. Solve the system of equations >					10.
I Semester B.Sc. Degree (CB) Improvement) Ex (2019 Ac) COMPLEMENTARY ELE 1C01 MAT-BCA	camination, I Imission On CTIVE COUI	November 2(wards) RSE IN MATH	122 HEMATICS	Prove that it is	11.
Time : 3 Hours		o o diffusition o		arks: 40	
23. If y = e ^{rt sos 'fy} , profito actyout		t - sint	o cos	Show that the	40
S	ECTION - A	t cost	nie / Amadin	OUR IDEA WOULD	.01
Questions 1 – 5, answer any four q	uestions. Eac	h question car	ries one ma	rk.lov. adt baid	h h
1. Find the derivative of $\sec^2 x$.			1000 3 10	MEV SID OTH	.42.
2. Find the derivative of tan 1 1 ta	$\frac{nx}{nx}$	Y 0 = V + XS	of equations	Does the set	15.
3. Write the dual of the following sta	tement :	OTTO-E		nsistant	
x + (y * z) = (x + y) * (x + z)	So riski kir	of April Viet vi	2. answer an	estions 16 - 21	пΩ
 4. Find the rank of the matrix 0 5. Show that A' is orthogonal if A is 	ortbogonal	\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		Show that do	
	ECTION - B	×	sin x + cos	Vill. Vb brill	71

Questions 6 – 15, answer any seven questions. Each question carries two marks.

6. Find the derivative of $\log (\sqrt{x^2 + 1})$

- 6. Find the derivative of $\log(\sqrt{x^2+1})$.

7. Given that $y = 3 \sin x - \cos x$. Prove that $y_2 = y$.

8. Find the nth derivative of sin (2x).

19. Find the n^{th} derivative of $\cos^2(3x)$.

- 9. Given that $x = \cos t$, $y = \sin t$. Find $\frac{d^2y}{dx^2}$.
- 10. Prove that in a Boolean algebra B, x'' = x for all $x \in B$.
- 11. Prove that in a Boolean algebra B, (x * y)' = 0 if and only if x * y = x.
- COMPLEMENTARY ELECTIVE (0 USTS) NATHEMATICS
 1CO1 MAT-BCA: Math. 0 at lcs 2 (0 0 0)
 1 CO1 MAT-BCA: Math. 0 at lcs 2 (0 0 0)
 1 CO1 MAT-BCA: Math. 0 at lcs 2 (0 0 0)
- 13. Show that the matrix $\begin{pmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{pmatrix}$ is orthogonal for all values of t.
- 14. Find the value of 'a' such that the rank of the matrix $\begin{pmatrix} 1 & 2 & 0 \\ 2 & a & 0 \\ 0 & 1 & a \end{pmatrix}$ is 2. Value of 1 and 12 of 12 of 13 of 14 of 15 of 15
- 15. Does the set of equations 2x + y = 0, x y = -1 are consistant? Justify your answer.

SECTION - C

Questions 16 - 22, answer any four questions. Each question carries three marks.

16. Show that
$$\frac{d}{dx}(\tan^{-1}x) = \frac{1}{1+x^2}$$

17. Find
$$\frac{dy}{dx}$$
, if $y = \frac{\sin x + \cos x}{\sin x - \cos x}$.

.O.T.¶

SECTION - B

- 19. Find the nth derivative of cos² (3x).

7. Given that $y = 3 \sin x - \cos x$. Prove that $y_2 = y$.

5. Show that A' is orthogonal if A is orthogonal

8. Find the nth derivative of sin (2x).

4. Find the rank of the matrix

20. Prove the following:

For any x in a Boolean algebra B, x + x = x.

- 21. Solve the system of equations x + 2y z = 3, x z = 1, -x + 4y + z = 5 using Crammer's rule.
- 22. Show that the vectors $x_1 = (1, 2, 3)$, $x_2 = (2, 1, 3)$, $x_3 = (1, -2, 3)$ are linearly independent.

SECTION - D

Questions 23 – 26, answer any two questions. Each question carries five marks.

23. If
$$y = e^{m \cos^{-1}x}$$
, prove that $(1 - x^2)y_{n+2} - (2n+1)xy_{n+1} - (n^2 + m^2)y_n = 0$.

24. Find $\frac{dy}{dx}$ for the following

a)
$$y = x^x + (\sin x)^x$$

b)
$$y = \log (1 + \sin x)$$
.

- 25. If x + y = 1 and $x \cdot y = 0$ in a Boolean Algebra B, prove that y = x'.
- 26. Test for consistency of the system of linear equations and solve them if consistant :

$$x - y = 0$$
, $x + z = 2$, $x + y + z = 3$.

Reg. No. :

Name:

I Semester B.Sc. Degree (CBCSS – O.B.E. – Regular/Supplementary/ Improvement) Examination, November 2021 (2019 Admission Onwards) COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 1C01 MAT-BCA: Mathematics for BCA I

Time: 3 Hours Max. Marks: 40

PART - A

Answer any 4 questions from this Part. Each question carries 1 mark.

- 1. Derive the derivative of tan x.
- 2. Find the derivative of $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$.
- 3. Write the dual of the following statement.

$$a + a'b = a + b$$
.

- 4. If the rank of the matrix $\begin{bmatrix} 1 & 2 \\ 3 & \lambda \end{bmatrix}$ is 1, find λ .
- 5. If A is an orthogonal square matrix, then prove that $|A| = \pm 1$.

PART - B

Answer any 7 questions from this Part. Each question carries 2 marks.

- 6. Find the derivative of $\sqrt{\sin \sqrt{x}}$.
- 7. If $y = \sin^{-1} x$, prove that $(1 x^2) y_2 2xy_1 = 0$.
- 8. Find the n^{th} derivative of $e^{2x} \sin x \sin 2x$.

K21U 6804

9. If
$$x = \frac{1}{2} \left(t + \frac{1}{t} \right)$$
, $y = \frac{1}{2} \left(t - \frac{1}{t} \right)$, find $\frac{d^2y}{dx^2}$.

- 10. Prove that in a Boolean algebra B, a + 1 = 1 for all $a \in B$.
- 11. Show that the power set of $A = \{a, b\}$ is a Boolean algebra.
- 12. Solve the system of equations x + y + z = 3, 2x + 4y z = 0, x 3y + 2z = 5.
- 13. Find value of a and b, if $A = \frac{1}{\sqrt{2}} \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ is orthogonal.
- 14. Determine the rank of the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \\ 1 & 1 & 4 \end{bmatrix}$.
- 15. Test for consistency the equations x + y + z = 2, x + 2y + 3z = 4, x + 3y + 4z = 5.

Answer any 4 questions from this Part. Each question carries 3 marks.

- 16. Derive the derivative of cos⁻¹ x.
- 17. Find $\frac{dy}{dx}$, if $y = \frac{x^{\frac{1}{2}}(1-2x)^{\frac{2}{3}}}{(2-3x)^{\frac{3}{4}}(3-4x)^{\frac{4}{5}}}$.
- 18. If $x^3 + y^3 = 3axy$, prove that $\frac{d^2y}{dx^2} = -\frac{2a^2xy}{(y^2 ax)^3}$.
- 19. Find the nth derivative of $\frac{1}{x^2 + a^2}$ in terms of r and θ .
- 20. State and prove absorption laws.
- 21. Find the value of λ and μ so that the system of equations 4x + 5y + 6z = 16, x 5z = -9, $x + 2y + \lambda z = \mu$ has (i) no solution, (ii) unique solution, (iii) infinite number of solutions.
- 22. Are the vectors $x_1 = (1, 3, 4, 2)$, $x_2 = (3, -5, 2, 2)$, $x_3 = (2, -1, 3, 2)$, linearly independent? If so, express one of these as a linear combination of the others.

PART - D

Answer any 2 questions from this Part. Each question carries 5 marks.

23. Find the derivatives of the following.

a)
$$y = \frac{x \sin^{-1} x}{\sqrt{1 - x^2}}$$
.

b)
$$x^{\tan x} + (\sin x)^{\cos x}$$
.

24. If $y = e^{a \cos^{-1}x}$, prove that $(1 - x^2)y_{n+2} - (2n + 1)xy_{n+1} - (a^2 + n^2)y_n = 0$. Further, find $(y_n)_0$.

25. Show that the following statements are equivalent in a Boolean algebra.

$$a) a + b = a$$

b)
$$a * b = b$$

c)
$$a + b = 1$$

d)
$$a * b' = 0$$
.

26. a) Using Gauss-Jordan method find the inverse of the matrix $\begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}$.

b) Solve by Cramer's rule the system of equations 4x + 5y + 6z = 16, x - 5z = -9, x + 2y + 3z = 7.

20. Find $\frac{\partial y}{\partial y}$ If $x = a[\cos t + \log \tan(t/2)]$, $y = a\sin t$.

K20U 3326

Reg. No.:....

Name :

I Semester B.Sc. Degree CBCSS (OBE) Reg./Sup./Imp. Examination, November 2020 (2019 Admn. Onwards)

COMPLEMENTARY ELECTIVE COURSE IN MATHEMATICS 1C01MAT-BCA: Mathematics for BCA – I

Time: 3 Hours

Max. Marks: 40

PART - A

Questions 1 - 5. Answer any 4 questions. Each question carries 1 mark.

- 1. Define equivalent matrices.
- 2. Write the nth derivative of sin(ax + b). One but state and a to sub enited .et
- 3. Define linear dependence.
- 4. Find the derivative of sin³x.
- 5. State complement laws in Boolean algebra.

Questions 6 – 15. Answer any 7 questions. Each question carries 2 marks.

- 6. Solve 2x + 3y = 5. 3x - 2y = 1 using Cramer's rule. This $\left(\frac{xS}{s}\right)^{1}$ has to evitavneb entropy $\frac{xS}{s}$.
- 7. Show that the vectors (1, 3, 4, 2), (3, -5, 2, 2) and (2, -1, 3, 2) are linearly dependent.
- 8. Define subalgebra. Give an example. 20012300 2 vns 1awanA 32 22 anotiza00
- 9. Find the derivative of $\sqrt{\sec(2x+3)}$.
- 10. Find the derivative of tanx.tanhx.
- 11. Find the nth derivative of $\frac{x^2 + 3x + 3}{-1x + 1(1+x^2)} = \frac{x^2 +$
- 12. Find the rank of matrix $\begin{bmatrix} 1 & 3 \\ 1 & -4 \\ -1 & 3 \end{bmatrix}$ by reducing it to normal form. needed entired .32

13. If
$$x^2 + y^2 = 1$$
 find $\frac{d^2y}{dx^2}$.

K20U 3326

Firme: 3 Hours

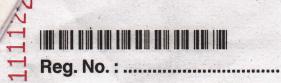
13. If $x^2 + y^2 = 1$ find $\frac{d^3y}{dx^2}$

- 14. State De Morgan's laws in Boolean algebra.
- 15. State Leibnitz's theorem for nth derivatives.

Questions 16 - 22. Answer any 4 questions. Each question carries 3 marks.

16. Find the rank of
$$\begin{bmatrix} 3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2 \end{bmatrix}$$

17. Find the nth derivative of $\frac{x}{x^2-1}$.


18. If
$$(1 - x^2) y_2 - xy_1 - a^2y = 0$$
 prove that $(1 - x^2) y_{n+2} - (2n + 1) xy_{n+1} - (n^2 + a^2)y_n = 0$.

- 19. Define dual of a statement. State and prove principle of duality.
- 20. Find $\frac{\partial y}{\partial x}$ if $x = a[\cos t + \log \tan(t/2)]$, $y = a\sin t$.
- 21. For the matrix $A = \begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ find two non-singular matrices P and Q such that PAQ is in normal form.
- 22. Find the derivative of $tan^{-1}\left(\frac{2x}{1-x^2}\right)$ with respect to $sin^{-1}\left(\frac{2x}{1+x^2}\right)$. V2 X8. PART D. PART D

Questions 23 - 26. Answer any 2 questions. Each question carries 5 marks.

- 23. Using partition method find the inverse of $\begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$ to evitative of tank in the derivative of tank in the deriva
- 24. If $y = e^{a\sin^{-1}x}$, show that $(1 x^2) y_{n+2} (2n+1)xy_{n+1} (n^2 + a^2)y_n = 0$.
- 25. Define Boolean algebra and give two examples.
- 26. Differentiate [xtanx + sinxcosx]

O.T.4

Name:.....

I Semester B.Sc. Degree (CBCSS(OBE) - Regular)

Examination, November - 2019

(2019 Admissions)

Complementary Elective Course in MATHEMATICS

1C01MAT-BCA: MATHEMATICS FOR BCA 1

Time: 3 Hours

Max. Marks: 40

Employ Recommon electrical

Tr. Fird the can define the U

Part - A

(Questions 1 - 5)

Answer any Four questions. Each Question carries 1 mark.

- 1. Find the derivative of $\frac{\sin x}{\cos x}$.
- 2. If A is an orthogonal matrix then Show that $A^{-1} = A^{1}$.
- 3. State Rouche's theorem.
- 4. State involution law, in Boolean Algebra.
- 5. Write the nth derivative of ax+b.

Part - B

(Questions 6-15)

Answer any Seven questions. Each question carries 2 marks.

6. Test the consistency of the following system of equations

$$2x+6y+11 = 0$$

$$6x + 20y - 6z + 3 = 0$$

$$6y-18z+1=0$$

it kintem landpentho na el A II

- 7. Find the inverse of the matrix $\begin{bmatrix} 1 & 3 \\ -1 & 2 \end{bmatrix}$.
- 8. Give example for two isomorphic Boolean algebras.
- 9. Find the derivative of tan-1 (sinx).
- 10. Find the nth derivative of sinx. cosx.
- 11. Show that the transformation

$$Y_1 = 2x_1 + x_2 + x_3$$

 $Y_2 = x_1 + x_2 + 2x_3$
 $Y_3 = x_1 - 2x_3$ is regular.

12. If
$$xy = 1$$
 find $\frac{d^2y}{dx^2}$.

- 13. State Demorgan's laws in Boolean algebra.
- **14.** Find the derivative of $\frac{x^2+1}{x^2-1}$.
- 15. Find the derivative of x² using first principles.

Part - C

(Questions 16-22)

Answer any Four questions. Each question carries 3 marks.

16. Solve the system of equations

$$3x+y+2z=3$$

$$2x-3y-z=-3$$

$$x+2y+z=4$$

by Cramer's rule

- 17. Find the nth derivative of x²cosx.
- **18.** If $y=\sin(m\sin^{-1}x)$ prove that $(1-x^2)y_{n+2}-2(n+1)xy_{n+1}-(m^2-n^2)y_n=0$.

- 9. Define dual of a statement. State and prove principle of duality.
- **20.** Find $\frac{\partial y}{\partial x}$ if $x = a\cos^3 t$, $y = a\sin^3 t$.
- 21. For the matrix $A = \begin{bmatrix} 1 & 2 & 3 & -2 \\ 2 & -2 & 1 & 3 \\ 3 & 0 & 4 & 1 \end{bmatrix}$ find two nonsingular matrices P and Q such that PAQ is in normal form.
- 22. Find the derivative of $\sin^{-1}\left(\frac{2x}{1-x^2}\right)$ with respect to $\tan^{-1}x$.

Part - D

(Questions 23-26)

Answer any Two questions. Each question carries 5 marks.

- 23. Using partition method find the inverse of $\begin{bmatrix} 3 & 2 & 4 \\ 2 & 1 & 1 \\ 1 & 3 & 5 \end{bmatrix}$
- 24. Find the nth derivative of $\frac{x}{(x-1)(2x+3)}$.
- 25. Define Boolean algebra and sub algebra. Give an example.
- **26.** Differentiate $\frac{x^{\frac{1}{2}}(1-2x)^{\frac{2}{3}}}{(2-3x)^{\frac{3}{4}}(3-4x)^{\frac{4}{5}}}.$