Reg. No. :

K24U 0830 UASX

12. What is an Abelian group ? Explain

19. Differentiate between the adjacency

14. What is an isomorphic graph?

Name :

IV Semester B.C.A. Degree (CBCSS – OBE Regular/Supplementary/ Improvement) Examination, April 2024 (2019 to 2022 Admissions)

GENERAL AWARENESS COURSE

4A14BCA: Discrete Mathematical Structures

Time: 3 Hours

Max. Marks: 40

PART – A (Short Answer)

ay an exa

Answer all questions.

 $(6\times1=6)$

- 1. Define complement of a set.
- 2. What is meant by contingency in propositional logic ? (p v q)-) tsril world .0s
- 3. Define symmetric relation.
- 4. What is a monoid? Give an example.
- 5. What is a connected graph?
- 6. Define planar graph.

PART - B notlimaH a ton and don (Short Essay)

Answer any 6 questions.

 $(6 \times 2 = 12)$

21. Define equivalence relation

- 7. Rewrite the set $S = \{5, 10, 15, 20, 25, 30\}$ in set builder form.
- 8. Explain conjunctive normal forms.
- 9. Define asymmetric relation. Give example.
- 10. Define NAND gate.
- 11. Define the terms converse, inverse and contra positive in propositional logic.

P.T.O.

K24U 0830 0 UAS X

12. What is an Abelian group? Explain.

Define minimum spanning tree.

14. What is an isomorphic graph? Give an example.

IV Semester B.C.A. Degree (CECSS - OBF Regular/Supplementary/

Answer any 4 questions.

 $(4 \times 3 = 12)$

Answer all questions

- 15. Define relation and explain various types of relations.
- 16. Define complete bipartite graphs. Draw an example for complete bipartite graph k_{2.3}.
- 17. Prove that "sum of degrees of vertices of any finite graph is even".
- 18. Evaluate the prefix expression +-*3 2/8 4 1.
- 19. Differentiate between the adjacency matrix and incidence matrix.
- 20. Show that $(-(p \lor q)) \lor (-p \lor q)$ is logically equivalent to -p.

Define symmetric relation. PART - D (Long Essay)

Answer any 2 questions:

(Sr=Sx8)

f. '(1=5×2) connected grap

10. Define NAND gate.

4. What is a monoid? Give an

- 21. Define equivalence relation. Show that the congruence relation on the set of 100 .0 integers is an equivalence relation.
- 22. Explain Hamiltonian circuit. Show that the below graph has not a Hamilton circuit.

- 23. Discuss the travelling salesman problem with example.
- 24. State and prove the basic laws and theorems of Boolean algebra.

K23U 1074 USSN Reg. No.: 10. Determine whether the following state THIC IV Semester B.C.A. Degree (CBCSS OBE - Regular/Supplementary/ Improvement) Examination, April 2023 (2019 Admission Onwards) GENERAL AWARENESS COURSE 4A14BCA: Discrete Mathematical Structures agreemed by a structure Max. Marks: 40 Time: 3 Hours 14. Define Antisymmetric Relation PART - A (Short Answer) $(6 \times 1 = 6)$ Answer all questions. 1. Define tautology. 2. Define equivalence relation: 3. How many relations are there on a set with 'n' elements? 4. Define Boolean variable. 5. Find the value of x if x + x = 0. 17. Prove that an undirected graph has so excurrence 6. Define Euler path.

> PART - B (Short Essay)
>
> 19. Define Cartesian product of two sets. Show that A × B ≠ B × A with the help of

Answer any 6 questions.

(6×2=12)

723 = -4193/+?

- 7. Define 'directed multigraphs'. pe vilsoigol eus p A q bus (p A q -) v q) tarti world .02
- 8. What is a 'decision tree' ?

P.T.O.

Improvement) Examinhation, April #023

- 9. What is 'OR gate' ?
- 10. Determine whether the following statements are true or false:
 - a) 0 ∈ ¢
 - IV Semester B.C.A. Degree (CBCS\$5/OBE Regular/Supplements
- 11. Find A B and B A if $A = \{1, 2, 3, 4, 5\}$ and $B = \{0, 3, 6\}$.
- 12. Write and converse and inverse of p -> g 15M 21910210 : AOEALA
- 13. What do you mean by fallacy?
- 14. Define Antisymmetric Relation.

PART - C (Essay)

Answer any 4 questions.

(4×3=12)

· Answer all questions.

- 15. Let R be a reflexive and transitive relation. Prove that Rⁿ = R for all positive 3. How many relations are there on a set with integers n.
- 16. Explain 'complete graphs'. Draw complete graph with number of vertices 5 and 6. Online 1.
- 17. Prove that an undirected graph has an even number of vertices of odd degree.
- 18. What is the value of the postfix expression? 723*-4193/+?
- 19. Define Cartesian product of two sets. Show that $A \times B \neq B \times A$ with the help of a suitable example.
- 20. Show that $\neg(p \lor (\neg p \land q))$ and $\neg p \land \neg q$ are logically equivalent by developing a series of logical equivalences.

PART – D (Long Essay)

Answer any 2 questions.

 $(2 \times 5 = 10)$

21. Let p: "Swimming at the shore is allowed".

q: "Sharks have been spotted near the shore"

Express each of these propositions as sentences

- a) p A q
- b) $p \rightarrow \neg q$
- c) p \rightarrow q
- d) $\neg p \rightarrow \neg q$
- e) $\neg p \land (p \lor \neg q)$.

້ , Define 'directed multigraphs

- 22. Explain Hamilton circuits with examples. Show that K_n has a Hamilton circuits whenever $n \ge 3$.
- 23. Explain Depth First Search method to build a spanning tree with suitable example.
- 24. State and prove De Morgan's laws and distributive laws using membership table.

(Short Essay)

K22U 1509

Reg. No.	:
Name :	

IV Semester B.C.A. Degree CBCSS (OBE) Regular/Supplementary/ Improvement Examination, April 2022 (2019 Admission Onwards) GENERAL AWARENESS COURSE 4A14BCA: Discrete Mathematical Structures

Time: 3 Hours

Max. Marks: 40

PART - A

(Short Answer)

Answer all questions.

 $(6 \times 1 = 6)$

- 1. Define set.
- 2. Define Tautology.
- 3. Distinct elements of A are mapped into distinct elements of B is called
- 4. Pictorial representation of a finite partial order on a set is called
- 5. A graph which allows more than one edge to join a pair of vertices is called a
- 6. A path of graph G, that includes each edge of G exactly once and intersects each vertex of G at least once is called

PART - B

(Short Essay)

Answer any 6 questions.

 $(6 \times 2 = 12)$

- 7. Determine the truth table of ~p (q p).
- 8. Let p be "He is tall" and q be "He is handsome". Write each of the following statements in symbolic form using p and q:
 - a) He is tall and handsome.
 - b) He is neither tall nor handsome.

K22U 1509

- 9. Find conjunctive normal form of p (p q).
- 10. Brief note on disjunctive normal form.
- 11. Prove that $\forall a \in B$, $a \cdot a = a$.
- 12. Simplify z(y + z)(x + y + z).
- 13. Define Tree with example.
- 14. What is Hamiltonian graph?

PART - C

(Essay)

Answer any 4 questions.

 $(4 \times 3 = 12)$

- 15. Illustrate the following identities by means of Venn diagrams.
 - a) A (B C) = (A B) (A C)
 - b) (AB).
- 16. Write down any three properties of complementation of sets.
- 17. Define inverse mapping with example.
- 18. Explain Pigeonhole principle.
- 19. Explain Travelling salesman's problem.
- 20. Define BFS for a graph and explain with example.

PART - D

(Long Essay)

Answer any 2 questions.

 $(2 \times 5 = 10)$

- 21. Prove that a graph is connected if and only if it has a spanning tree.
- 22. Show that (p r) (q r) and (p q) r are not logically equivalent.
- 23. Let A, B, C are the sets. Prove that A (B C) = (A B) C if and only if $A \cap C = \phi$.
- 24. If f: AB and g: BC are bijections, then prove that gof: AC is also a bijection.

				IIII		
1 (88191) SIB ((8K)	1100	111221	11837		ш	IREI

K21U 1073

Reg. No.	:	1

IV Semester B.C.A. Degree CBCSS (OBE) Regular Examination, April 2021 (2019 Admission Only) General Awareness Course 4A 14 BCA: DISCRETE MATHEMATICAL STRUCTURES

e : 3 Hours	PART – A		Max. Marks : 40
(5	Hort Allswei)		
swer all questions.	-		$(6\times1=6)$
A set with no elements is called _			
Define proposition.			
a. a = ?			
Define onto mapping.			
		are ordered pairs	s of vertices,
What is planar graph?			
	PART – B		
(\$	Short Essay)		
nswer any 6 questions.			(6×2=12)
	swer all questions. A set with no elements is called _ Define proposition. a. a = ? Define onto mapping. Let G = (V, E) be a graph. If the then the graph G is called What is planar graph?	PART – A (Short Answer) swer all questions. A set with no elements is called Define proposition. a. a = ? Define onto mapping. Let G = (V, E) be a graph. If the elements of E then the graph G is called What is planar graph? PART – B (Short Essay)	PART – A (Short Answer) swer all questions. A set with no elements is called Define proposition. a. a = ? Define onto mapping. Let G = (V, E) be a graph. If the elements of E are ordered pairs then the graph G is called What is planar graph? PART – B (Short Essay)

- 7. Determine the truth table of ~p (q p).
- 8. Let p be "it is cold" and q be "it is raining". Give a simple verbal sentence which describes each of the following:

a. ~p

b. ~p ∧ ~q

- 9. Define Hasse diagram.
- 10. Define relation from A to B with example.
- 11. Describe laws of Boolean Algebra.
- 12. Simplify F = + + A + AB.
- 13. Define complete graph with example.
- 14. What is graph coloring?

PART – C (Essay)

Answer any 4 questions.

 $(4 \times 3 = 12)$

- 15. Prove that $(p \land q)$ p is tautology.
- 16. A = {1, 2}, B = {1, 2, 4, 5}, C = {5, 7, 9, 10}. Find the following :
 - a) $(A \cup B) \cup C$
 - b) $(A \cap B) \cap C$
 - c) $(A \cup B) \cap C$.
- 17. Prove that the theorem : Let f : A B then g : B be both one-one and onto functions, then gof : A C is also one-one and onto.
- 18. Simplify Y = (P + Q) (P + Q') (P' + Q).
- 19. Prove that K_5 is non planar graph.
- 20. The adjacency structure of a graph G is given as G = [A : B, E; B : A, E, F, G; C : D, G, H; D : C, H; E : A, B; F : G; G : B, C, F; H : C, D].

PART - D (Long Essay)

Answer any 2 questions.

 $(2 \times 5 = 10)$

After use of the major of the major could be

- 21. Compare DFS and BFS graph.
- 22. Describe shortest paths in weighted graphs.
- 23. Without using truth tables prove that $(\neg p \lor q) \land (p \land (p \land q)) = p \land q$.
- 24. Write down the properties of Union operations in sets.